
 1



Abstract— Maintaining unit formations in an RTS game is an

interesting and challenging AI problem. The goal of this research

project was to solve the problem as completely and generically as

possible, so that other developers may be able to form

conclusions about how best to implement such a system for their

own projects. Whereas much of the extant research focuses on

one specific area of the larger problem, we will attempt to

provide developers with a concrete example of such a system in

action as well as an exploration of the problem space.

Index Terms—Intelligence and AI in Games, Computer

Simulation, Real-Time Systems, Cooperative Systems, Pathing,

Formation, Coordinated Movement

Manuscript received April 10, 2014.
Andrew T. Christensen is a graduate of The Guildhall at SMU, Plano, TX

75024 USA (phone: 817-821-2638; e-mail: andrew@andrewtc.com).

Squirrel Eiserloh is a lecturer at The Guildhall at SMU, Plano, TX 75024
USA (e-mail: beiserloh@smu.edu).

I. INTRODUCTION

EAL-TIME STRATEGY (RTS) games are complex battle

simulations in which each player takes command of an

army of soldiers (called units) and must defeat all opposing

enemy forces. RTS games mimic conventional warfare by

giving the player incomplete knowledge of the battlefield and

limited resources. This scenario necessitates scouting the

terrain, managing an economy, and coordinating strikes on

enemy forces while minimizing casualties. The extent to

which players must micromanage individual units varies from

game to game, but all RTS games provide players with some

mechanism for controlling the behavior of their respective

units on the battlefield.

Because unit control comprises a vital part of the user

experience of an RTS game, developers typically devote a

large amount of time and resources to making unit control as

effortless and intuitive as possible. To achieve this, RTS

games such as Starcraft and Supreme Commander provide

high-level controls for ordering units to a specific location on

the map without specifying the exact path that each unit will

take to get there. Players are typically able to select multiple

Formation Movement for

Real-Time Strategy Games

Andrew T. Christensen, Squirrel Eiserloh

Figure 1: The test bed application, with a sample map and several unit formations. Units are represented by circles. Impassable areas are drawn in solid white.
Each formation draws in a different color.

R

 2

units with the mouse and then click at a location on the map to

order all selected units to that location. In order to make this

possible, the game typically employs a pathfinding strategy of

some kind to determine how each unit will get to the

destination. Once the pathfinding step is complete, the result is

passed to a unit-level AI that is responsible for managing the

movement of each unit in such a way that it eventually reaches

the destination. Because the specifics of unit movement vary

from game to game, there is no universally accepted way to

implement this system that is applicable to all games in the

genre. On the contrary, unit movement is an area under

constant research, and no two games address the problem in

exactly the same way.

Some games, such as Age of Empires and Supreme

Commander 2, enforce additional constraints on unit

movement by keeping units in organized formations. This

simulates the behavior of conventional armies, which

traditionally march together in organized ranks across the

battlefield. Games that keep units in formation make use of

formation-level AI that coordinates the movement of

individual units within the larger group. A good formation-

level AI is able to efficiently move units into formation and

keep them organized, but is flexible enough to allow units to

break ranks as necessary. For example, it is often more

efficient for units to split up to go around an obstacle and

regroup on the other side (as shown in Figure 2), rather than

moving around the obstacle in formation. Units should also be

allowed to disperse when engaging enemy units at close range

(as shown in Figure 3). In this scenario, dispersing allows the

entire formation to surround and attack the enemy, which

could result in fewer casualties than staying in formation.

Building a formation-level AI that handles edge cases such as

these is non-trivial, and is another area of constant research.

Figure 2 (left): A formation (shown in red) encountering an obstacle (shown

in blue). The black arrows demonstrate how the formation-level AI might

move units to avoid the obstacle, by having units disperse to go around the
obstacle and regroup on the other side. Figure 3 (right): A formation (shown

in red) engaging an enemy force (shown in blue). In this situation, the

formation-level AI should allow units to fan out and get as close to the enemy
as possible, rather than keeping them in organized ranks.

The goal of this research project was to explore various

methods of achieving formation-based movement and assess

their benefits and drawbacks. We were able to create a two-

tiered AI that is capable of managing units at both an

individual and a group level. It consists of a formation-level

AI, which determines where each unit should stand relative to

each other to maintain cohesion, and a unit-level AI, which

moves individual units into formation and out of the way of

obstacles. Both tiers work in tandem to steer each formation to

its goal as quickly and efficiently as possible.

II. RESEARCH REVIEW

Real-time coordinated movement is a broad topic with wide

applications in robotics, games, and the defense industry.

While there is no universally accepted technique for

implementing coordinated movement, much of the current

research draws directly or indirectly upon Craig Reynolds’

work on the subject of flocking behaviors. [1] Reynolds

demonstrated how it is possible to simulate seemingly

complex group behaviors by enforcing only a few simple

constraints on individual movement. In Reynolds’ simulation,

each individual within the larger group (called a boid)

constantly steers in the direction that best satisfies three

competing constraints: separation (maintaining a minimum

distance between units), alignment (steering in the average

direction of the entire group), and cohesion (steering toward

the center of mass of nearby boids). [1] Enforcing these

constraints produces emergent, organic behavior that mimics a

flock of birds or a school of fish. Remarkably, maintaining

flocking behaviors requires relatively little processing time,

since the flocking constraints are resolved on an individual

basis without any sort of group coordination.

While flocking behaviors are capable of producing natural-

looking formation movement, flocking alone is not adequate

in situations where units are likely to collide with obstacles or

with each other. In most RTS games, the map is littered with

obstacles and impassable terrain that units must successfully

navigate in order to reach their destination. RTS games

usually impose the additional constraint that units cannot

move through each other. For these games, the unit- and/or

formation-level AI must make use of pathfinding in order to

ensure that units can traverse the map without being impeded

by obstacles. The most widely used search algorithm for unit

pathfinding is A-star. Since the algorithm is computationally

expensive, however, using it to find paths for individual units

is usually cost-prohibitive. RTS developers commonly

alleviate this problem by finding ways to reduce the frequency

with which units search the map. For example, the formation-

level AI in Age of Empires mitigated the problem by choosing

one unit out of each formation (called the “commander”) to

handle pathfinding. [2] As necessary, each commander would

perform searches for the entire formation and all other units in

the group would follow it to the destination. [2]

Recent RTS titles, including Planetary Annihilation and

Supreme Commander 2, use flowfields to perform optimized

pathfinding for large numbers of units. A flowfield is a type of

tile-based vector field (i.e. grid of directions) whose vectors

represent directions through the map that eventually lead to a

common goal location. Flowfields are generated by using a

flood fill algorithm, similar to Djikstra’s, that expands

outward from the goal location, eventually visiting all tiles

that are reachable from the goal. As with Djikstra’s algorithm,

each tile is expanded in order of cost (i.e. the total cost of

 3

entering all tiles between the current tile and the destination).

For each tile, the algorithm records the direction to the

adjacent tile with the lowest cost that has already been

expanded (and is therefore closer to the goal). The end result

is a map of vectors that “flow” around obstacles to the goal

location. (See Figure 4 and Figure 5.) Once the flowfield has

been generated, all units headed to the goal location can look

at the flowfield data to determine how to get closer to the goal.

Each unit simply retrieves the flowfield vector for its current

position every frame and moves in the direction that the vector

is pointing, which will eventually push the unit into another

flowfield tile. In this manner, units can follow the directions

through the map to the goal location without having to find a

path to the goal (as shown in Figure 5). Because A-star

pathfinding is expensive, it is faster to generate a single

flowfield for large numbers of units than having units request

paths to the goal individually.

Figure 4: An example of how flowfield generation works. The algorithm
starts at the goal (represented by the red target) and progressively expands all

adjacent tiles in order of their total cost to reach the goal. For each step of the

algorithm, the red outlines above designate the tiles that will be expanded in
the next step. Impassable tiles (shown in blue) are not expanded (denoted by

the red X’s). As each tile is expanded, the algorithm stores a vector pointing

toward the adjacent tile with the lowest goal cost (shown above as black
arrows). The algorithm will eventually visit all tiles that are reachable from

the goal.

Researchers at the University of Washington, seeking to

optimize pathfinding for real-time crowd simulations, were the

first to conduct extensive research on the subject. [3] The

researchers used flowfields to support hundreds of crowd

agents moving independently toward different goals at

interactive rates. [3] Elijah Emerson subsequently drew upon

this research to develop a flowfield-based group pathfinding

system for Supreme Commander 2 that pioneered the use of

flowfields in real-time strategy games.

One downside to using flowfields for pathfinding is that

each flowfield is only valid for units travelling toward a

common, stationary goal location. For an RTS, this implies

that the game must generate a new flowfield dynamically

every time the player issues a new movement order. Because

flowfields typically record information for the entire map,

generating a new flowfield can be prohibitively slow for large

maps. [4] To address this issue, Emerson optimized the

flowfield generation for Supreme Commander 2 by using a

multi-tiered pathfinding approach to cull areas of the flowfield

that did not need to be generated. His solution was to divide

the map into a square grid of sectors, each of which was

divided into smaller map tiles. Each sector stored detailed

adjacency information that could be used to test if two sectors

were connected to each other. Instead of generating a

flowfield for the entire map, the game would first run an A-

star search through the larger sector map to determine which

sectors units would pass through while en route to the goal.

The game would then generate flowfield data only for these

sectors (i.e. only the sections of the map where the flowfield

data would be relevant). [4]

While pathfinding helps units avoid static obstacles on the

map, pathfinding alone cannot prevent units from colliding

with moving obstacles (such as other units). This is especially

important for units in the same formation, since they tend to

move in close proximity to each other and are therefore likely

to collide. RTS games typically employ a variety of collision

avoidance techniques to ensure that units can avoid dynamic

obstructions. A common technique involves using a potential

field, a type of heat map that records information about which

areas of the map are the most “congested” (i.e. full of moving

Figure 5: A sample flowfield. Each tile stores a direction to an adjacent tile

that is closer to the goal (shown in gray). Units can find a path from any tile to

the destination by starting at any tile following the directions in the map
(shown in red).

 4

obstacles). Each tile on the influence map contains a value

between 0.0 and 1.0 that represents how close the tile is to

nearby obstacles. Each frame, moving obstacles and units

increase the value of all nearby tiles to indicate that these tiles

are congested. Pathfinding searches can then incorporate the

values in the influence map into the entry cost of tiles on the

map in order to bias the search away from areas of heavy

congestion.

Figure 6: An example potential field. The grayscale color in each tile

represents the value at that tile. Values closer to 0.0 are lighter, while values
closer to 1.0 are darker. Each unit increases the value of surrounding tiles.

Hägelback demonstrated how potential fields could be used

to allow units to quickly find optimal places to stand in their

immediate surroundings. [5] In his solution, each unit runs a

greedy search through the influence map every frame to

determine if any nearby tiles are less congested than its own.

If so, the unit will attempt to move into the surrounding tile

with the least congestion. Because the tiles surrounding other

units have higher values on the influence map, units naturally

spread out from each other and move out of the way of

obstacles when necessary. [5]

The collision avoidance process becomes is much more

difficult for units with acceleration and angular velocity.

Introducing these factors implies that units cannot turn in

place, and must move forward in order to turn around. To

handle this, Dave Pottinger, the AI developer for Age of

Empires, created a collision avoidance system that calculates a

trajectory for each unit and tests for overlap with other unit

trajectories in order to predict future collisions. [6] To resolve

these situations, a formation-level AI senses future collisions

between units and decides the priority of each unit involved in

the collision. The higher-level AI lets the unit with the highest

priority pass while ordering all other units to stop or slow

down in order to avoid the collision. After the higher priority

unit has passed, the AI repeats the process until all units have

passed each other [7]. One advantage of his design is that it is

able to handle stacked canyon scenarios easily. These are

situations in which multiple units in a narrow corridor must all

move out of the way in order to allow some other unit to exit

[2]. He shows how defining strict passing rules for units

allows the AI to solve this problem without writing code to

specifically address this edge case [2].

Figure 7: A stacked canyon scenario. In order for unit C to leave the corridor,
units A and B must move out of the way first.

There are many different ways to represent the shape and

structure of formations. The most common approach is to

generate a set of available positions, called slots, to which

units in the formation are assigned. Each unit moves to its

assigned formation slot and follows it as the formation travels

across the map. Assigning a specific position to each unit

within a squad can cause problems because units tend to block

each other from getting to their desired locations. [7] To solve

this problem, van der Heijden et al. chose to model formations

dynamically using constraints instead of assigning an exact

position to each unit. [7] The researchers defined general rules

for where units should stand in a larger formation and let each

unit determine an optimal position for itself that best satisfied

these constraints [7]. An alternate method, described by

Clodéric Mars, tries to prevent collisions between units

moving into formation by sorting each unit by its position

before assigning it to a slot. [8] His algorithm first sorts units

by their vertical distance to the formation center. It then

divides the formation slots into rows and assigns units to each

row in sorted order, with the highest units filling the top row

and the lowest filling the bottom row (as illustrated in Figure

8). After each unit has been assigned to a row, the algorithm

numbers each slot from left to right by its order within the

row. The units in each row are subsequently sorted by their

horizontal position and assigned a number from left to right in

a similar fashion. Finally, each unit is assigned to the

formation slot in its current row with a number that

corresponds to its own (e.g. unit 1 would be assigned to slot 1,

followed by unit 2 in slot 2, and so forth).

This paper draws upon previous research to come up with a

list of suggested approaches for implementing formation

movement in a modern RTS. The description of each approach

is comprehensive enough to give guidance on overcoming

many of the common hurdles that developers face when

 5

designing such a system. Specifically, this paper addresses

issues related to building and maintaining formations, group

pathfinding, handling unit collisions, and handling edge cases

that arise when moving through complex terrain.

Figure 8: Clodéric’s method for resolving collisions between units as they
move into formation. Top left: The situation before units have been assigned

a slot. Formation slots are indicated by hollow circles, while units are

indicated by solid ones. Top right: The formation slots are divided into rows.
Units are assigned to each row from the top down, in order of their height.

Bottom left: The slots in each row are numbered from left to right by their

position within the row. Units are sorted by their horizontal position and
assigned a number from left to right. Bottom right: Each unit is assigned to

the slot in its current row with a matching number.

III. METHODOLOGY

Building a formation movement system that works well is a

broad and open-ended task. Because development resources

are limited, developers must choose carefully which problem

areas to address. The requirements for formation movement

depend largely on the rules of the game and the expected

behavior of units. For our artifact, we chose to prioritize the

visual quality of unit movement and pathfinding efficiency

over collision avoidance. Our primary goal was to create an AI

that was capable of keeping formations organized and

effectively leading them to their destinations without

sacrificing frame rate.

A. Simulation

Our test bed application consists of a tile-based map that

contains multiple units that the user is able to control. We

chose to represent the map as a grid of square tiles that are

marked either passable or impassable. Passable tiles allow

units to enter them, while impassable tiles are solid and collide

with units. For the sake of simplicity, we built our movement

system with the assumption that the passible/impassable status

of each tile would not change during the course of the

simulation. With regard to pathfinding, each passable tile is

considered to be connected to adjacent tiles in each of the four

cardinal directions—north, south, east and west. Units,

however, are not constrained by the adjacency of tiles, and

may move freely through passable areas in any direction.

Units are roughly the same size as a single tile, but can occupy

more than one tile at any given point in time.

Units are independent actors within the world, each with its

own position, velocity, and orientation. These are represented

as floating point values, so it is possible for units to exist at

virtually any location within the bounds of the map. Since

introducing acceleration and angular velocity into the physical

simulation would make unit movement much more complex,

we chose to simplify the problem by allowing units to change

their velocity and direction instantaneously. Thus, units

always face the direction in which they are moving, and

always attempt to travel at their maximum speed when

moving. To keep units from overlapping and prevent

collisions between units, the simulation applies a repulsive

force to units that come within a certain distance of each other.

The repulsive force increases exponentially as units get closer

to each other, allowing units to overlap partially but not

completely.

B. Formations

We chose to model each formation as a list of ideal

positions for each unit within the formation, called slots.

Although they do not collide with impassable tiles, formations

are physical actors within the world, with a position,

orientation, and velocity. Formation slots are stored as vector

offsets from the central position, or locus, of the formation.

Hence, the locus acts as an origin point for the formation as a

whole (as shown in Figure 9). Changing the orientation of the

Figure 9: A large formation within the test bed application. The locus of the
formation is drawn as a small cross at the center of the formation. A small line

indicates the facing direction of the formation. Formation slots are drawn as

hollow circles.

 6

formation will cause all formation slots to rotate around the

locus of the formation to maintain the same offset.

Formations are created and destroyed dynamically as the

user issues movement orders to different units. Our test bed

allows the user to select multiple units with the mouse and

then click a location on the map to issue a new movement

order to all selected units. The simulation then creates a new

formation and assigns all units in the selection to it. To

determine the initial position of the formation, the simulation

averages the positions of all selected units to determine the

center of mass of the selection. It also calculates the vector

from the center of mass to the destination point and

normalizes it to find an initial heading for the formation.

C. Pathfinding

We attempted to draw upon current research to build a

formation-level AI that would handle pathfinding efficiently

for large numbers of units. At a high level, there are two

separate layers of pathfinding that work together to achieve

this goal. Firstly, each formation stores a goal location that

represents where the formation should be after it has fulfilled

its move order. The formation attempts to find a path through

the map and follow it to the goal location. If unsuccessful, the

formation simply moves in a straight line toward the goal.

Secondly, individual units try stay as close as possible to their

assigned slot in the larger formation. Each unit attempts to

move in a straight line path to its slot location each frame. For

units that are already close to the formation, this solution

works well. However, units that are far away from the

formation cannot simply head in the direction of their slot

location and hope to reach the formation. These units need to

find a path through the map to their slot location and follow it

in order to get into formation.

Our first attempt to solve this problem involved using A-

star to find paths from each unit to its slot in the formation.

Units were able to request paths from the Map as necessary

when moving toward their target location. Each path was

stored as a list of coordinates for each tile leading to the goal.

We chose to delegate pathfinding responsibilities to the Map

over having units find paths individually because path requests

often take more than one frame to complete. To prevent drops

in frame rate while fulfilling path requests, the Map would

spread out the pathfinding process for each request over

several frames, if necessary. Once the search was complete,

the Map would notify the requestor that the path was ready.

The unit who requested the path could then make use of the

path until it was no longer needed.

Despite our efforts to maintain an interactive framerate by

amortizing the cost of each path request, our first solution did

not scale well when applied to large numbers of units. In an

effort to reduce the cost of pathfinding, we implemented a

flowfield-based system that allows for efficient pathfinding for

both individual units and the formation itself. A unit that is

blocked by terrain from reaching its slot location in a straight

line must fall back on some alternative method of getting

closer to its slot location. Since each unit ultimately follows its

formation to the goal location, it is reasonable to assume that

any path through the map that leads to the formation goal

location will eventually lead units closer to the formation

itself. To take advantage of this, each formation generates a

flowfield headed toward its target location when it is created.

If units are too far away from the formation, they may rely on

the flowfield data for the formation in order to head toward the

goal location. These units will eventually be close enough to

the goal to take a straight-line path to their slot location

without becoming stuck. Generating a flowfield for each

formation in this manner has the added benefit of allowing the

formation itself to find a path to the goal location without

having to run a separate A-star search. Instead, the formation

itself also follows the flowfield tiles to its destination.

Another significant benefit of using flowfields is that they

can be repurposed for obstacle avoidance. Each frame, units in

the formation can check the map tile underneath their slot

location to determine if it is passable. If not, then it is likely

that the formation is partially covering an obstacle. This is the

case in when formations move over areas of impassable

terrain. In these situations, units stop moving toward their

designated slot location and follow the flowfield instead. This

causes units to break off from the formation as necessary to go

around obstacles and regroup once the formation is on the

other side.

D. Unit Movement

One disadvantage of representing the map as a series of tiles

is that following paths through the map directly result in

movement that looks unnatural. Because each tile is only

connected to adjacent tiles in each of the cardinal directions,

units following the path directly will only move in cardinal

directions in order to reach the goal. This is inefficient

because, in most cases, there exists a straight line path that

will take the unit closer to the goal in a shorter amount of time

than visiting each tile along the way. To resolve this, once per

frame each unit uses the flowfield for its formation to find a

tile that is closer to the goal than the tile to which it is

currently moving. If such a tile is found, the unit performs a

straight-line trace through the map to the tile’s location to see

if it can reach the tile directly. If so, the unit will change

direction to move toward this location instead of the next tile

ahead of it in the flowfield. Each frame, the unit repeats this

process with each subsequent tile in the flowfield until it finds

a tile that it cannot reach via a straight line or the goal location

itself. The unit continues to search subsequent tiles for better

straight line paths, as new paths may become available as the

unit continues to move closer to the goal. This makes the

movement of units more believable and reduces the amount of

time it takes for units to travel to their destination.

E. Slot Assignment

Formations in the test bed use a variation on the algorithm

described by Clodéric Mars to assign units to formation slots.

The formation slots are divided into rows. Each unit is then

sorted by its position relative to the locus of the formation in

order to determine its optimal slot.

Because the user can select and issue new move orders to

 7

units that are already in formation, the formation must be able

to handle changes to the number of units assigned to it.

Whenever units are removed, the formation must reconfigure

all slots to ensure that the formation remains cohesive. It must

also destroy unused slots to guarantee that there are always

exactly the same number of slots in the formation as there are

units.

One final restriction on formation movement is that each

formation must move slowly enough that its units do not fall

behind. If a formation gets too far ahead of its units, units will

not be able to keep up and will have to resort to using the

flowfield to reach the destination. To ensure that each

formation stays close to its units, once per frame the formation

counts the number of units that are “in formation” (i.e. within

a small distance of their formation slot). It divides this number

by the number of slots to get a value between 0.0 and 1.0

(which we have termed the cohesion factor of the formation).

To account for units using the flowfield, slots that are

currently over impassable tiles do not count toward the

number of slots when calculating the cohesion factor. The

formation then uses this value as a multiplier for its current

movement speed to slow down as necessary to allow units to

catch up. When all units are in formation (i.e. very close to

their designated slots), the cohesion factor approaches 1.0, and

the formation travels at maximum speed. If a significant

number of units fall behind, the cohesion factor will approach

0.0, causing the formation to slow down or stop to allow the

units to catch up. This technique allows the formation to travel

at the fastest possible speed toward the goal when all units are

in formation, but gives stragglers ample time to catch up when

falling behind.

IV. CONCLUSION

Maintaining unit formations in an RTS game is an

interesting and challenging problem that poses many difficult

challenges. While our implementation is very basic, we were

able to construct an RTS unit movement system with both

unit- and formation-level AI that is capable of moving units

from one point on the map to another efficiently. Our solution

is able to overcome many of the common pitfalls inherent to

unit movement in general, and is able to perform optimized

pathfinding for large formations of units. The solutions we

have proposed to address these problems are by no means

exclusive. Yet, we believe that they are will constitute a useful

resource for developers who are approaching the problem for

the first time.

REFERENCES

[1] C. W. Reynolds, "Flocks, herds and schools: A

distributed behavioral model," ACM SIGGRAPH

Computer Graphics, vol. 21, no. 4, pp. 25-34, 1987.

[2] D. Pottinger, "Implementing Coordinated Movement,"

Gamasutra, 29 January 1999. [Online]. Available:

http://www.gamasutra.com/view/feature/131721/impleme

nting_coordinated_movement.php. [Accessed 13

September 2013].

[3] A. Treuille, S. Cooper and Z. Popovic, "Continuum

Crowds," ACM Transactions on Graphics, vol. 25, no. 3,

pp. 1160-1168, 2006.

[4] E. Emerson, "Crowd Pathfinding and Steering Using

Flow Field Tiles," in Game AI Pro: Collected Wisdom of

Game AI Professionals, Boca Raton, A K Peters/CRC

Press, 2013, pp. 307-323.

[5] J. Hägelback, "Potential-Field Based navigation in

StarCraft," in IEEE Conference on Computational

Intelligence and Games, Granada, 2012.

[6] D. Pottinger, "Coordinated Unit Movement," Gamasutra,

22 January 1999. [Online]. Available:

http://www.gamasutra.com/view/feature/131720/coordina

ted_unit_movement.php. [Accessed 12 September 2013].

[7] M. van der Heijden, S. Bakkes and P. Spronck, "Dynamic

Formations in Real-Time Strategy Games," in IEEE

Symposium on Computational Intelligence and Games,

Perth, 2008.

[8] H. Danielsiek, R. Stüer, A. Thom, N. Beume, B. Naujoks

and M. Preuss, "Intelligent Moving of Groups in Real-

Time Strategy Games," in IEEE Symposium on

Computational Intelligence and Games, Perth, 2008.

[9] C. Mars, "The Simplest AI Trick in the Book," in Game

Developers Conference, San Francisco, 2014.

